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Abstract. Our aim is to enumerate all NFAs (nondeterministic finite
automata) that recognize a given regular language L. More precisely, we
produce a set A of automata such that each automaton A recognizing L
appears in A up to the merging of some states and the addition of some
transitions, that is, there is a surjective morphism that maps A onto an
automaton of A. We provide a common theoretical framework, based on
morphism properties, to previous works of Kameda and Weiner (1970),
and of Sengoku (1992), whose issue is the minimization of NFAs. Our
paper gives two non comparable enumeration techniques. Both proceed
by enumerating a specific class of grid covers of the automaton map. The
first one is related to the canonical automaton introduced by Carrez. The
second one is based on new outcomes related to the relationship between
grid covers and their projections.

Introduction

Nondeterministic automata engineering is at the origins of a flood of applications
in computer science, such as pattern matching, software verification and many
others. This paper deals with the enumeration of all NFAs (nondeterministic
finite automata) that recognize a given regular language. This problem plays a
significant role in NFA algorithmics and it involves specific structures related
to automata such as grid covers [8] that are widely studied here. This problem
derives from a former one that is the search of minimal NFAs (minimal w.r.t.
number of states) for a regular language. Contrary to deterministic automata
(DFAs), there may be several non isomorphic automata being minimal w.r.t.
number of states. We distinguish the minimization from the reduction problem.
The reduction consists in finding an automaton smaller than the one given as
input. Minimization is known to be a NP-hard problem [7], even though many
ways of reduction have been investigated, like some polynomial heuristics in [4].

However, a full minimization is possible for a given language as soon as we
have some practical means of enumerating NFAs that recognize it, and heuristics
can use a process of partial enumeration.

Our study draws a parallel between automata and grid covers of the lan-
guage’s reduced automaton map (RAM), which have been described by Kameda



and Weiner in [8]. The underlying idea is to associate each automaton with one
grid cover of the language’s RAM. The automaton can be recovered with no
ambiguity from its associated grid cover (up to the merging of some states and
the addition of some transitions). So, one can enumerate automata recognizing
a given language by enumerating all the grid covers of its RAM. Unfortunately,
this process is prohibitive, or at least, inefficient. Hence we are searching for
particular classes of grid covers, as small as possible, which enable the enumer-
ation of all the NFAs recognizing the language. More precisely, if A is the set
of produced automata, then for all automata A recognizing the language, there
exists a surjective morphism that maps A onto an automaton of A.

In this paper, we give two classes of such grid covers. The first one is related
to the canonical automaton, and the second one is based on new outcomes con-
cerning the relationship between grid covers and their projections. The first part
concerning the canonical automaton is a reminder of already known outcomes
from Carrez [3], and Arnold et al. [1]. The canonical automaton is also underly-
ing in the early work of Kameda and Weiner [8]. Their specific approach is the
main link between the canonical automaton and our second class of grid cov-
ers. This second class is our main contribution. We give a specification on right
projections of grid covers that fully characterizes the class of enumeration. This
specification is easily implementable and does not require to build the entire
canonical automaton, whose space complexity is exponential. The possibility to
bypass the exponential complexity is the main difference between our work and
the work of Sylvain Lombardy et al. [9] concering the canonical automaton. The
idea of using a right projection of grid covers appears in the thesis of Sengoku
[11].

Sections 1 and 2 introduce a general background for studying the relationship
between automata and grid covers. Sections 3 and 4 provide two enumeration
techniques based on two different classes of grid covers.

1 Definitions and Properties

We assume that the reader is familiar with regular languages and automata
theory [12]. We just introduce some notations.

We consider a finite alphabet Σ. Let A =< Q, Σ, δ, I, F > be an automaton.

The left language of a state q ∈ Q is denoted
←−
LA(q) and defined by

←−
LA(q) =

{w ∈ Σ∗ | q ∈ δ(I, w)}. The right language of a state q ∈ Q is denoted
−→
LA(q)

and defined by
−→
LA(q) = {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}.

Let w = a1a2 · · · an be a word of Σn, we define w = anan−1 · · · a1. We also
define the reverse of A as A =< Q, Σ, δ, F, I >, where q′ ∈ δ(q, a)⇔ q ∈ δ(q′, a)
( ∀q, q′ ∈ Q, a ∈ Σ ).

Let A =< Q, Σ, δ, I, F > and A′ =< Q′, Σ, δ′, I ′, F ′ > be two automata.
A morphism from A to A′ is a mapping ϕ from Q to Q′ such that ϕ(I) ⊆ I ′,
ϕ(F ) ⊆ F ′, and for all q, p ∈ Q and a ∈ Σ, p ∈ δ(q, a) =⇒ ϕ(p) ∈ δ′(ϕ(q), a).



1.1 Characteristic events

All the notions that appear in this Section are from [8] with slight modifications.
We consider a regular language L. Let A =< QA, Σ, δA, 1, FA > be the

minimal complete DFA of L, where QA = {1, . . . , n} is the set of states. Let
B =< QB, Σ, δB, q1, FB >= Det(A) obtained from the reverse of A by subset
determinization. The automaton B is made complete by eventually adding a sink
state, so that it is also a minimal complete DFA [2]. States of B are arbitrarily
ordered and named qi ( 1 ≤ i ≤ nb ). Each qi is a subset of QA, and q1 is
initial. As in [8], we define the RAM of the language L, that is unique up to a
permutation of rows and columns:

Definition 1 ([8]) The reduced automaton map (RAM) associated with L, de-
noted M , contains n rows and nb columns. The element at the intersection of
the ith row and the jth column is defined by

Mi,j = 1 if i ∈ qj

= 0 otherwise
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q1 {2, 3, 4}
q2 {2, 3}
q3 {2, 4}
q4 {1}

1 0 0 0 1
2 1 1 1 0
3 1 1 0 0
4 1 0 1 0

M q1 q2 q3 q4

←−
ch1 ε
←−
ch2 a
←−
ch3 a.b+

←−
ch4 a.c+

−→
chq1

ε
−→
chq2

b+

−→
chq3

c+

−→
chq4

a.(b∗ + c∗)

Fig. 1. Automata A and B for the language a(b∗ + c∗), the associated RAM M , and
the associated characteristic events.

Definition 2 ([8]) Characteristic left events of the language L are the lan-

guages
←−
chi =

←−
LA(i) (1 ≤ i ≤ n), while characteristic right events of L are



the languages
−→
chqj

=
←−
LB(qj) (1 ≤ j ≤ nb). Let L ⊆ {1, . . . , n} and R ⊆

{q1, . . . , qnb
}, we note

←−
chL (resp.

−→
chR) instead of

⋃
l∈L

←−
chl (resp.

⋃
r∈R

−→
chr).

Proposition 1 ([8])

1. Left (resp. right) characteristic events of L are pairwise disjoint.

2. Let i ∈ {1, . . . , n} and j ∈ {1, . . . , nb}, we have
←−
chi ·

−→
chqj

⊆ L ⇐⇒Mi,j = 1.

Definition 3 Let q be a state of an automaton A that recognizes L. A set λ(q) of
characteristic left events and a set ρ(q) of characteristic right events are associted
with q by letting:

λ(q) = {i ∈ {1, . . . , n} |
←−
chi ∩

←−
LA(q) 6= ∅}

ρ(q) = {qj ∈ {q1, . . . , qnb
} |
−→
chqj

∩
−→
LA(q) 6= ∅}

Definition 4 ([8]) A grid in the RAM M is a pair [L, R] where L is a subset
of {1, . . . , n}, R is a subset of {q1, . . . , qnb

}, and for all i ∈ L and qj ∈ R, we
have Mi,j = 1. The set of all grids in M is denoted GM .

Definition 5 Let us define some external operations over the states of A and
B. Let L ⊆ {1, . . . , n}, R ⊆ {q1, . . . , qnb

}, and a ∈ Σ,

L.a = δA(L, a), L.a−1 = δ−1

A
(L, a)

a.R = δB(R, a), a−1.R = δ−1

B
(R, a)

The transitions of automata A and B can be considered as inclusion relations
between characteristic events:

Proposition 2 ([8]) Let q, p ∈ {1, . . . , n} and a ∈ Σ, there exists a transition

q
a
−→ p in A if and only if

←−
chq · a ⊆

←−
chp. The transition qi

a
−→ qj exists in B if

and only if a ·
−→
chqi

⊆
−→
chqj

.

Proof — In the one hand, we have

←−
chq · a ⊆

←−
chp ⇐⇒

←−
LA(q) · a ⊆

←−
LA(p)

Since A is deterministic, this is equivalent to p ∈ δ(q, a).
In the other hand,

a ·
−→
chqi

⊆
−→
chqj

⇐⇒
←−
LB(qi) · a ⊆

←−
LB(qj)

Since B is deterministic, this is equivalent to qj ∈ δB(qi, a). �

2 Grid covers

Definition 6 A grid cover of the RAM M is a set C of grids that covers M in
the sense that for all i ∈ {1, . . . , n} and j ∈ {1, . . . , nb} such that Mi,j = 1, there
exists [L, R] ∈ C with i ∈ L and qj ∈ R.



2.1 Relationship between automata and grid covers

Definition 7 Let A =< Q, Σ, δ, I, F > be an automaton that recognizes L. We
define the grid cover G(A) associated with A by letting G(A) = {[λ(q), ρ(q)] |
q ∈ Q}.

Conversely, there exist different ways to define an automaton associated with
a grid cover. In particular, Kameda and Weiner achieve their aim by using an
operation that is a reverse of the subset determinization, namely, the intersection
rule. It consists in creating a transition labelled by a from the grid [L1, R1] to
the grid [L2, R2] if L1.a ⊆ L2. That is, only the left parts of grids are considered.
We shall see that we obtain very coherent results by simultaneously considering
left and right parts of the grids.

Definition 8 Let C be a grid cover of the RAM M . We let
−→
C be the automaton

associated with C, defined by
−→
C =< C, Σ, δC , IC , FC >, where

1. ( ∀[L1, R1] ∈ C, a ∈ Σ ) δC([L1, R1], a) = {[L2, R2] ∈ C | a.R2 ⊆ R1 ∧
L1.a ⊆ L2},

2. IC = {[L, R] ∈ C | 1 ∈ L},
3. FC = {[L, R] ∈ C | q1 ∈ R}.

Notice that the left (resp. right) language of a grid [L, R] in
−→
C is not neces-

sarily equal to
←−
chL (resp.

−→
chR). Nevertheless, the following inclusion holds.

Proposition 3 ([8]) Let C be a grid cover of the RAM M . For each grid

[L, R] ∈ C, we have
←−
L

−→
C ([L, R]) ⊆

←−
chL and

−→
L

−→
C ([L, R]) ⊆

−→
chR.

Proof — From the definition of
−→
C , ε ∈

←−
L

−→
C ([L, R]) implies 1 ∈ L, and we get

ε ∈
←−
chL. We shall prove by induction on the length of the word w that w ∈

←−
L

−→
C ([L, R]) implies w ∈

←−
chL. Let n ∈ N, and wa ∈

←−
L

−→
C ([L, R]) ∩ Σn+1, where

w ∈ Σn and a ∈ Σ. Hence there exists [L1, R1] ∈ C with w ∈
←−
L

−→
C ([L1, R1]) such

that [L1, R1]
a
−→ [L, R] in

−→
C , thence L1.a ⊆ L. By induction, we have w ∈

←−
chL1

,

then wa ∈
←−
chL1.a and yet wa ∈

←−
chL.

We go about things in a symmetrical way for the second condition. �

Proposition 4 Let A be an automaton that recognizes L. The automaton
−−−→
G(A)

is equivalent to A. Moreover, the function that maps each state q of A to the grid

[λ(q), ρ(q)], considered as a state of
−−−→
G(A), is a surjective automaton morphism.

Proof — Suppose there exists a transition q1

a
−→ q2 in A. We necessarily have

←−
L (q1) · a ⊆

←−
L (q2) and a ·

−→
L (q2) ⊆

−→
L (q1). Let us prove that the transition

[λ(q1), ρ(q1)]
a
−→ [λ(q2), ρ(q2)] exists in

−−−→
G(A), that is, we have to prove λ(q1).a ⊆

λ(q2) and a.ρ(q2) ⊆ ρ(q1). Indeed, let ch1 ∈ λ(q1). By definition of λ, ch1

intersects
←−
L (q1): there is a w ∈ ch1 ∩

←−
L (q1). Then wa ∈

←−
L (q2)∩ ch1.a. There is



a unique characteristic event ch′
1 that contains ch1.a because of Proposition 2,

so that ch′
1 ∈ λ(q2). This proves λ(q1).a ⊆ λ(q2). Now let ch2 ∈ rho(q2). There

is a w ∈ ch2 ∩
−→
L (q2). Then aw ∈

−→
L (q1), and the unique characteristic right

event ch′
2 that contains a.ch2 is in ρ(q1).

It can also be seen that the set of initial (resp. final) states of A is mapped into

the set of initial (resp. final) states of
−−−→
G(A). Then the mapping is a morphism,

and L(A) ⊆ L(
−−−→
G(A). The reverse inclusion is deduced from Proposition 3. �

Definition 9 Let A be an NFA recognizing L, A is said to be a saturated NFA

if it is isomorphic to
−−−→
G(A).

A

L1

R1

L2

R2

B

Fig. 2. Representation of two grids linked by a transition.

Now, let us give an intuitive representation of all these objects. Figure 2
represents two grids of a RAM M . The different positions on the vertical axis are
the states ofA: remind that they are bijectively associated with left characteristic

events. Moreover, we have a transition q
a
−→ p in A if and only if

←−
chq.a ⊆

←−
chp. The

different positions on the horizontal axis are the states of B: they are bijectively
associated with the right characteristic events, and we have a transition qi

a
−→ qj

in B if and only if a ·
−→
chqj

⊆
−→
chqi

. The condition L1.a ⊆ L2 (resp. a.R2 ⊆ R1)
is visualized on Figure 2 by the fact that each transition outgoing from L1 is
entering L2 (resp. each transition entering R2 is outgoing from R1).

2.2 Different classes of covers

The following definition of legitimate covers is close to the one given by Kameda
and Weiner. Together with legitimate covers, we introduce the class of tight
covers and the class of prime covers.

Definition 10



1. A cover C is said to be legitimate if
−→
C recognizes L.

2. A cover C is said to be tight if G(
−→
C ) = C.

3. A cover C is said to be prime if every grid [L, R] in C is prime, that is, if

( ∀[L′, R′] ∈ GM ) L ⊆ L′ ∧R ⊆ R′ =⇒ [L, R] = [L′, R′]

Proposition 5

1. A tight cover is legitimate.
2. A cover C is tight if and only if

( ∀[L, R] ∈ C )
←−
L

−→
C ([L, R]) =

←−
chL ∧

−→
L

−→
C ([L, R]) =

−→
chR

3. A cover C is tight if and only if the two following conditions are satisfied:
(i) For all grids [L2, R2] ∈ C and all a ∈ Σ, for all l ∈ L2.a

−1, there exists
[L, R] ∈ C such that l ∈ L, L.a ⊆ L2 and a.R2 ⊆ R,
(ii) For all grids [L, R] ∈ C and all a ∈ Σ, for all r′ ∈ a−1.R, there exists
[L2, R2] ∈ C such that r′ ∈ R2, L.a ⊆ L2 and a.R2 ⊆ R.

Proof — (1) Let C be a tight cover and uv ∈ L. Their exists i ∈ {1, . . . , n}

and j ∈ {q1, . . . , qnb
} such that u ∈

←−
chi and v ∈

−→
chqj

. Since G(
−→
C ) = C, there

exists [L, R] ∈ G(
−→
C ) such that i ∈ L and j ∈ R, hence u ∈

←−
L

−→
C ([L, R]) and

v ∈
−→
L

−→
C ([L, R]).

(2) The mapping [L, R] 7→ (
←−
chL,

−→
chR) is clearly injective: the characteristic

events are pairwise disjoint. Hence we have G(
−→
C ) = C iff for all [L, R] ∈ C,

←−
L

−→
C ([L, R]) =

←−
chL and

−→
L

−→
C ([L, R]) =

−→
chR.

(3) Let C be a tight grid cover, [L2, R2] ∈ C, a ∈ Σ and l ∈ L2.a
−1. Then

←−
chl.a ∈

←−
L

−→
C ([L2, R2]). Hence there necessarily exists a state [L, R] such that

l ∈ L and such that [L, R]
a
−→ [L2, R2] in

−→
C . The second necessary condition is

obtained by a symmetric way.
Suppose the first condition is verified. We shall prove by induction on the

length of the word w that for all [L, R] ∈ C, w ∈
←−
chL ⇒ w ∈

←−
L

−→
C ([L, R]). The

equality is then deduced from Proposition 3.

The case |w| = 0 is given by the definition of
−→
C . Now, let n ∈ N, [L2, R2] ∈ C

and wa ∈
←−
chL2

, where w ∈ Σn and a ∈ Σ. Hence there exists l ∈ L2.a
−1 such

that w ∈
←−
chL. By induction, we have w ∈

←−
L

−→
C ([L, R]). Moreover, the first

condition implies that [L, R]
a
−→ [L2, R2] exists in

−→
C . Hence wa ∈

←−
L

−→
C ([L2, R2]).

The second sufficient condition is obtained in a symmetric way. �

Proposition 5.3 is, in a different framework, the characterization given by
Courcelle, Niwinski and Podelski [6] for rectangular decompositions deduced

from an automaton. Notice that for all grid covers C, the automaton
−→
C recog-

nizes a subset of L. Thus, proving that C is legitimate is equivalent to proving

that L ⊆ L(
−→
C ). For all automata A, the grid cover G(A) is a tight grid cover

— by definition. However, there exist legitimate covers that are not tight.



As a consequence of Proposition 4, tight grid covers are good candidates
for enumerating automata, since this class of grid covers is associated with the
class of saturated automata and since for each automaton A recognizing L,
there exists a surjective morphism from A onto a saturated automaton. Indeed,
the enumeration of NFAs and the enumeration of tight grid covers are equivalent
problems by definition. Hence there is no straightforward enumeration technique
of tight grid covers. The following sections present two different approaches for
this problem.

3 Grid cover extensions and automaton morphisms

The process described in this section consists in extending horizontally and then
vertically a given cover in order to get a prime cover.

Definition 11 Let [L, R] be a grid of M . We define RL and LR by letting
RL = max{R′ ⊆ {q1, . . . , qnb

} | [L, R′] ∈ GM} and LR = max{L′ ⊆ {1, . . . , n} |
[L′, R] ∈ GM}.

Let C be a grid cover of M , the horizontal extension of C is the cover H(C) =
{[L, RL] | [L, R] ∈ C} while its vertical extension is V (C) = {[LR, R] | [L, R] ∈
C}. A grid cover is said to be vertically (resp. horizontally) prime if it is equal
to its own vertical (resp. horizontal) extension.

Lemma 1 Let C be a cover whose grids are horizontally prime. Let [L, R] and
[L2, R2] be two grids of C, and let a ∈ Σ, we have

L.a ⊆ L2 =⇒ a.R2 ⊆ R

Symmetrically, if C is a cover whose grids are vertically prime, then we have

a.R2 ⊆ R =⇒ L.a ⊆ L2

Proof — Suppose that L.a ⊆ L2. For all r2 ∈ R2, we have L.a ⊆ L2 ⊆ r2

where r2 is considered as a subset of QA. Hence, L ⊆ δ
A

(r2, a). Through subset
determinization, we get L ⊆ δB(r2, a). And since R is maximal for the property
[L, R] ∈ GM , that is for the property L ⊆ r ( ∀r ∈ R ), we have δB(r2, a) ∈ R,
that is, a.r2 ∈ R. �

Lemma 2 Let C be a grid cover of M . The mapping ϕh : [L, R] 7→ [L, RL] is

a surjective morphism that maps
−→
C onto

−−−→
H(C). In a same way, the mapping

ϕv : [L, R] 7→ [LR, R] is a surjective morphism from
−→
C onto

−−−→
V (C).

Proof — Let [L1, R1], [L2, R2] ∈ C and a ∈ Σ such that the transition [L1, R1]
a
−→

[L2, R2] exists. Since we have L1.a ⊆ L2 and since H(C) is horizontally prime,

Lemma 1 implies that the transition [L1, RL1
]

a
−→ [L2, RL2

] exists in
−−−→
H(C). In

addition, it is clear that ϕ1 maps initial and final states of
−→
C respectively into

the initial and final states of
−−−→
H(C).

On the other hand, ϕv(M) = ϕh(M), hence ϕv is also a surjective automaton
morphism. �



Theorem 1 Let C be a grid cover of the RAM M . There exists a prime grid

cover C′ and a surjective morphism that maps
−→
C into

−→
C′.

3.1 The canonical automaton

Consider the language L and its associated RAM M . We have a particular case
where a prime grid cover is a tight grid cover.

Definition 12 Let CL denote the grid cover of M that consists of all prime grids

of M . The automaton
−→
CL is said to be the canonical automaton of L.

Proposition 6 The prime grid cover CL is tight.

Proof — We have to prove that CL satisfies the Property 3 of Proposition 5.
Let [L2, R2] ∈ CL, a ∈ Σ and l ∈ L2.a

−1. Let L = L2.a
−1 and R = RL.

We have l ∈ L, and L is nonempty. On the other hand,
←−
chL ·

−→
cha.R2

⊆ L, which
shows that R is also nonempty.

The grids [L, R] and [L2, R2] are both horizontally prime. Because of the
Lemma 1, we just have to verify that L.a ⊆ L2, which is trivial.

Now let [L, R] ∈ C, a ∈ Σ and r′ ∈ a−1.R. Let R2 = a−1.R and L2 = LR2
.

We have r′ ∈ R2, and R2 is nonempty. On the other hand,
←−
chL.a ·

−→
chR2

⊆ L,
which shows that L2 is also nonempty.

The grids [L, R] and [L2, R2] are both vertically prime. Because of the Lemma
1, we just have to verify that aR2 ⊆ R, which is trivial. �

Corollary 1 (of Theorem 1) Let A be an automaton recognizing L, there ex-

ists a morphism from A into
−→
CL. Moreover, every minimal NFA of L is isomor-

phic to a subautomaton of the canonical automaton
−→
CL.

Proof — Let A be a minimal NFA of L. There exists a morphism ϕ that maps

A into
−→
CL. The image of A through ϕ is an automaton recognizing L, that has

at least as many states as A. This proves that ϕ is injective. �

Hence the canonical automaton is a means of enumerating NFAs recognizing
L. It also provides a first technique to search the minimal NFAs of L [1, 3,
10]. A comparison between the fundamental automaton[10] and the canonical
automaton can be found in [5], where their calculations are shown to have a
same complexity.

4 Enumerating tight prime grid covers

Another approach for enumerating NFAs is to enumerate tight prime grid covers,
which is natural since each automaton is associated with a unique tight grid
cover. In this case, we shall see that the relevant information for a given grid
cover is contained in either its right projection (i.e. on the horizontal axis) or its
left projection. We choose the right one. The underlying minimization technique
is the one described by Hiroaki Sengoku [11].



Definition 13 A right cover of the RAM M is a family R of subsets of
{q1, . . . , qnb

} that covers the first row of M in the sense that for all j ∈
{q1, . . . , qnb

} such that M1,j = 1, we have j ∈ R for some R ∈ R.

As for grid covers, we can associate a right cover with each automaton.

Definition 14 Let A =< Q, Σ, δ, I, F > be an automaton that recognizes L. We
define the right cover R(A) associated with A by letting R(A) = {ρ(q) | q ∈ Q}.
Let C be a grid cover, we also define its associated right cover R(C) = {R ⊆
{q1, . . . , qnb

} | ( ∃L ⊆ {1, . . . , n} ) [L, R] ∈ C}.

Of course, for all automata A, we have R(G(A)) = R(A). Conversely, we
associate an automaton with each right cover as follows.

Definition 15 Let R be a right cover, its associated automaton is
−→
R =<

R, Σ, δR, IR, FR > defined by δR(R, a) = {R′ ∈ R | aR′ ⊆ R} for all R ∈ R
and a ∈ Σ, IR = {R ∈ R | 1 ∈ r, ∀r ∈ R}, FR = {R ∈ R | q1 ∈ R}.

Now, let us introduce the class of legitimate (resp. tight) right covers.

Definition 16

1. The right cover R is legitimate if
−→
R recognizes L.

2. The right cover R is tight if R(
−→
R) = R.

Definition 17 Let R be a right cover, we define its associated grid cover as

G(
−→
R).

Lemma 3 is significant since it proves that tight covers and tight right cov-
ers are bijectively associated, and that each tight right cover is the horizontal
projection of its associated tight grid cover, which justifies Definition 15.

Lemma 3 Let C be a grid cover of the RAM M . The automaton
−−−→
V (C) is iso-

morphic to
−−−→
R(C). In addition, the function ϕ that maps a state [L, R] of

−−−→
V (C)

to the state R of
−−−→
R(C), is an isomorphism.

Proof — Since the automaton
−−−→
V (C) is vertically prime, Lemma 1 implies that

the transition [L, R]
a
−→ [L2, R2] exists in

−−−→
V (C) if and only if a.R2 ⊆ R, that is iff

the transition R
a
−→ R2 exists in

−−−→
R(C). A state [L, R] in

−−−→
V (C) is initial iff 1 ∈ L,

that is iff 1 ∈ r for all r ∈ R (L is maximal), that is iff R is initial in
−−−→
R(C). A

state [L, R] in
−−−→
V (C) is final iff q1 ∈ R, that is iff R is final in

−−−→
R(C). �

Some properties about right covers are rather similar to Proposition 5. The
following proposition is a consequence of Lemma 3.

Proposition 7 Let R be a right cover of the RAM M .

1. If R is tight, then R is legitimate.



2. R is tight if and only if

( ∀R ∈ R )( ∀a ∈ Σ )( ∀r′ ∈ a−1.R )( ∃R2 ∈ R | r
′ ∈ R2 ) a.R2 ⊆ R

Lemma 4 Let C be a tight grid cover of the RAM M . The function that maps

each state [L, R] of
−→
C to the state V ([L, R]) of

−−−→
V (C) is a surjective automaton

morphism.

Proof — We still apply Lemma 1, since V (C) is vertically prime. If the transi-

tion [L, R]
a
−→ [L2, R2] exists in

−→
C , then aR2 ⊆ R and the related transition exists

in
−−−→
V (C). If [L, R] is initial in

−→
C , then 1 ∈ L and if we let [L2, R2] = V ([L, R]),

then it comes 1 ∈ L2 and V (C) is initial in
−−−→
V (C). The same reasoning works for

final states. �

Now, let us define automata that are associated with tight right covers.

Definition 18 Let A be an automaton recognizing L. A is said to be right sat-

urated if A is isomorphic to
−−−−−−→
V (G(A)).

According to Lemma 4, right saturated automata are good candidates for
enumeration, since for each automaton A recognizing L, there exists a surjective
morphism that maps A onto a right saturated automaton.

Theorem 2 Right saturated automata are bijectively associated with tight right
covers of the RAM M . Indeed,

1. Let A be a right saturated automaton, then A is isomorphic to
−−−→
R(A).

2. Let R be a tight right cover of M , then
−→
R is right saturated.

3. Let R1 and R2 be two distinct tight right covers of M , then
−→
R1 and

−→
R2 are

not isomorphic.

Proof — (1) is a consequence of Definition 18 and Lemma 3.

(2) Let R be a tight right cover. We haveR(
−→
R) = R. Hence,

−→
R is isomorphic

to
−−−→
R(
−→
R), which is itself isomorphic to

−−−−−−→
V (G(

−→
R)) from Lemma 3. Hence

−→
R is right

saturated.
(3) Two isomorphic automata have the same set of right languages. �

As a result, the enumeration of right saturated NFAs recognizing L can be
achieved by enumerating the tight right covers of the RAM M . We now give a
characterization of tight right covers which provides an algorithmic approach.

Proposition 8 A family R of subsets of {q1, . . . , qnb
} is a tight right cover of

the RAM M if and only if:

1. ( ∀j ∈ {q1, . . . , qnb
} |M1,j = 1 )( ∃R ∈ R ) j ∈ R.

2. ( ∀R ∈ R )( ∀a ∈ Σ ) δ
B
(R, a) =

⋃
{R′ ∈ R | δB(R′, a) ⊆ R}.



Proof — Let R be a right cover of M . Then, R is tight if and only if for all
R ∈ R, for all r ∈ R, for all a ∈ Σ and r′ ∈ δ

B
(R, a), there exists R′ ∈ R such

that a.R′ ⊆ R, that is δB(R′, a) ⊆ R. �

Proposition 8 gives a mathematical characterization of tight right covers. In
practical terms, the enumeration of all tight right covers consists in walking along
an exploration tree. At the root of the exploration tree, one chooses a cover of
M1,j. Then, for each block R already in the cover, some blocks R′ ⊆ δ

B
(R, a) are

added so that δ
B
(R, a) is covered by such blocs R′, that is, condition (2) holds

for this block R.
Thence, an alternative method for searching minimal NFAs consists in ap-

plying this enumeration technique and searching the smallest tight right covers.
From a practical point of view, this is the technique described by Sengoku in
[11].

5 Conclusion

Let us conclude by stating that, contrary to an assertion of Sengoku in [11],
searching minimal NFAs cannot be achieved by only considering tight right cov-
ers that are projections of a prime grid cover. It is true that prime grid covers
are maximal in terms of surjective automaton morphisms. Unfortunately, there
is no reason for the horizontal projection of a prime cover to be tight.

Then we have two distinct and a priori non comparable enumeration tech-
niques. Is there one technique better than the other to enumerate all NFAs re-
mains an open question that could be investigated by practical tests. Whatever,
the enumeration of tight right covers has a crucial advantage over the canoni-
cal automaton as it permits a partial enumeration, avoiding the obstacle of the
exponential complexity.
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